
Exam Statistical Reasoning
Date: Thursday, October 30, 2014
Time: 09.00-12.00
Place: Kapteyenborg, Landleven 12, 5419.0119
Progress code: WISR-11

Rules to follow:

• This is a closed book exam. Consultation of books and notes is not permitted.

• Do not forget to fill in your name and student number.

• The number of points per question are indicated within a box. Ten points are free.

• We wish you success with the completion of the exam!

START OF EXAM

1. Negative binomial distribution with Gamma prior 20
Consider the following sampling model. The random variables Y1, . . . , Yn are nega-
tive binomial distributed, symbolically Y1, . . . , Yn|θ ∼ NBIN(θ, r), and i.i.d. condi-
tional on the parameters r ∈ N and θ ∈ [0, 1]. Assume that r is known and fixed,
while θ is unknown. Impose a Beta prior with the hyperparameters a and b on θ,
symbolically θ ∼ Beta(a, b).

Recall the following: The density (PDF) of a Beta distribution with parameters
a > 0 and b > 0 is given by:

p(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
· θa−1 · (1− θ)b−1

for x ∈ [0, 1]. The density (PDF) of the negative binomial distribution with two
parameters r ∈ N and θ ∈ [0, 1] is given by

p(x|θ, r) =

(
r + x− 1

x

)
· θr · (1− θ)x

for x ∈ N0.

(a) 5 Compute the joint density p(y1, . . . , yn|θ, r) of the sampling model.

(b) 10 Compute the posterior distribution of θ, i.e. compute the following con-
ditional distribution θ|(Y1 = y1, · · · , Yn = yn).

(c) 5 A geometric distribution with parameter θ ∈ [0, 1] has the density (PDF):

p(x|θ) = θ · (1− θ)x

for x ∈ N0.
First, show that the geometric distribution is a special case of the negative bi-
nomial distribution. Then determine the posterior distribution of θ when the
random variables Y1, . . . , Yn are geometric distributed, Y1, . . . , Yn|θ ∼ Geo(θ),
and the prior distribution of the parameter θ is the continuous uniform distri-
bution on the interval [0, 1], symbolically: θ ∼ Uniform([0, 1]).
HINT: Recall that: Uniform([0, 1]) = Beta(1, 1).

to be continued below
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2. Uniform distribution with Pareto prior 15
Consider the following sampling model. The random variables Y1, . . . , Yn are i.i.d.
and continuous uniformly distributed on the interval [0, b], symbolically:

Y1, . . . , Yn|b ∼ Uni([0, b])

where the upper bound of the interval b ∈ R+ is unknown. Impose a Pareto prior
with parameters k > 0 and m > 0 on b, symbolically b ∼ Pareto(k,m).

(a) 3 Give the joint density p(y1, . . . , yn|b) of the sampling model for the sample
spaces yi ∈ R+

0 (i = 1, . . . , n). That is, give p(y1, . . . , yn|b) for all yi ∈ R+
0

(i = 1, . . . , n) by using a case-by-case definition (see HINT).

(b) 10 Show that the posterior distribution of b is a Pareto distribution with

parameters k̃ := k + n and m̃ := max {y1, . . . , yn,m}, symbolically:

b|(Y1 = y1, . . . , Yn = yn) ∼ Pareto(k̃, m̃)

Perform a case-by-case analysis to actually show that m̃ := max {y1, . . . , yn,m}.

(c) 2 Give an interpretation of the two hyperparameters k and m in terms of
pseudo observations.

HINT: The densities (PDFs) of the uniform distribution on [0, b] and the Pareto
distribution with parameters k and m are as follows. For x ∈ R+

0 :

p(x|b) =

{
1
b
, x ≤ b

0, else

p(x|k,m) =

{ (
m
x

)k
, x ≥ m

0, else

3. Predictive distribution 20
Consider the following sampling model. The random variables Y1, . . . , Yn are i.i.d.
and Gaussian distributed, symbolically: Y1, . . . , Yn|µ, σ2 ∼ N(µ, σ2), where the vari-
ance parameter is known, σ2 = 1, and the expectation parameter µ is unknown.
Given the observed data (Y1 = y1, . . . , Yn = yn) assume that a Gaussian prior,
µ ∼ N(µ0, τ

2
0 ), has been imposed on µ and that it is already known that the poste-

rior distribution of µ is the standard Gaussian distribution:

µ|(Y1 = y1, . . . , Yn = yn) ∼ N(0, 1)

The goal is to compute the predictive distribution for a new random variable Ỹ .

HINTS:

(1) As usual, we have Ỹ |µ, σ2 ∼ N(µ, σ2) and Ỹ , Y1, . . . , Yn are i.i.d..

(2) The density (PDF) of a Gaussian distribution with parameters µ ∈ R and

σ2 ∈ R+ is given by:

p(x|µ, σ2) =
1√
2π
· 1

σ
· e−

1
2 ·

1
σ2
·(x−µ)2

for x ∈ R.

to be continued below
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(a) 5 Given a Bayesian model with a one-dimensional parameter µ ∈ R, e.g. the
Gaussian model defined above. Show that the density (PDF) of the predictive
distribution Ỹ |(Y1 = y1, . . . , Yn = yn) is given by:

p(ỹ|y1, . . . , yn) =

∫
p(ỹ|µ) · p(µ|y1, . . . , yn)dµ

(b) 5 Show that the following relationship is true. For ỹ, µ ∈ R:

e−0.5·(ỹ−µ)
2 · e−0.5·µ2

=
1√
2
· e−0.5·

ỹ2

2 · 1√
0.5
· e−0.5·

(µ−0.5·ỹ)2
0.5

(c) 10 Compute the predictive distribution Ỹ |(Y1 = y1, . . . , Yn = yn) for the
Gaussian Bayesian model, defined above.

4. Discrete Markov chains 20
Consider a simple discrete random variable X with sample space Θ = {1, 2, 3, 4}
and probability density function (PDF): pX(1) = 0.1, pX(2) = 0.4, pX(3) = 0.4,
and pX(4) = 0.1. The goal is to construct a Metropolis-Hastings MCMC sam-
pling scheme to generate a sample from the distribution of X. Assume that pro-
posal moves are designed such that the sixteen proposal probabilities are given by:
Q(1, 1) = 0, Q(1, 2) = 0.8, Q(1, 3) = 0.2, Q(1, 4) = 0, Q(2, 1) = 0.2, Q(2, 2) = 0,
Q(2, 3) = 0, Q(2, 4) = 0.8, Q(3, 1) = 1, Q(3, 2) = 0, Q(3, 3) = 0, Q(3, 4) = 0,
Q(4, 1) = 0, Q(4, 2) = 1, Q(4, 3) = 0, and Q(4, 4) = 0, where Q(i, j) is the proba-
bility to propose to move from state i ∈ Θ to state j ∈ Θ.

(a) 6 Compute the following six Metropolis-Hastings acceptance probabilities
A(1, 2), A(2, 1), A(1, 3), A(3, 1), A(2, 4) and A(4, 2), where A(i, j) is the prob-
ability to accept a move from state i ∈ Θ to state j ∈ Θ.

(b) 3 Compute the following six (1-step) transition probabilities T (1, 2), T (2, 1),
T (1, 3), T (3, 1), T (2, 4) and T (4, 2), where T (i, j) is the probability for a move
(transition) from state i ∈ Θ to state j ∈ Θ. HINT: 10/32 = 5/16 = 0.3125.

(c) 4 Compute the following four (1-step) transition probabilities T (1, 1), T (2, 2)
and T (3, 3) and T (4, 4), where T (i, i) is the probability for a move from i ∈ Θ
to i ∈ Θ, i.e. the probability for staying at state i.

(d) 3 Give the 4-by-4 (1-step) transition probability matrix T of the resulting
Markov chain.

(e) 4 Give a graphical representation of the transition matrix. That is, represent
each of the four states {1, 2, 3, 4} as a node. Then use directed edges to indicate
all those state space transitions that have a positive probability. As usual, label
each edge with its transition probability.

to be continued below
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5. Full conditional distributions and MCMC Sampling 15
Consider the following hierarchical Bayesian model: The sampling model is given by
n variables Y1, . . . , Yn which are exponentially distributed, Y1, . . . , Yn|θ ∼ EXP(θ),
where θ > 0 is the parameter of the Exponential distribution and Y1, . . . , Yn are
i.i.d. conditional on the unknown parameter θ. A Gamma distribution with hyper-
parameters a > 0 and b > 0 is imposed on θ, where a is known and b is unknown.
Therefore a Gamma hyperprior with the fixed/known hyperhyperparameters α > 0
and β > 0 is imposed on b. Mathematically, we thus have

Y1, . . . , Yn|θ ∼ EXP(θ)

θ|b ∼ Gamma(a, b)

b ∼ Gamma(α, β)

where a > 0, α > 0, and β > 0 are fixed and known.

(a) 5 Give a graphical model representation of this hierarchical model.

(b) 5 Show that the densitities of the two full conditional distributions fullfil:

p(θ|b, y1, . . . , yn) ∝ p(y1, . . . , yn|θ) · p(θ|b)

p(b|θ, y1, . . . , yn) ∝ p(θ|b) · p(b)

(c) 5 Do not compute the two full conditional distributions. Just assume that
both full conditional distributions p(θ|b, y1, . . . , yn) and p(b|θ, y1, . . . , yn) can
be computed in closed form. Describe a MCMC sampling scheme based on
two Gibbs sampling steps to generate a sample (b(1), θ(1)), . . . , (b(T ), θ(T )) from
the joint posterior distribution: (θ, b)|(Y1 = y1, . . . , Yn = yn). You can provide
either some pseudo-code (see below) or a verbal description of the algorithm.
HINT: Proposed structure of your pseudo code:

Initialisation: Set b(1) = ..., and set θ(1) = ...

Iterations: For t = 2, . . . , T :
Sample ... from ...
Sample ... from ...

Output: ...

to be continued below
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6. Monte Carlo approximation 10
Consider a general Bayesian model. The sampling model is given by n variables
Y1, . . . , Yn whose distribution depends on a one-dimensional parameter θ ∈ R. The
variables Y1, . . . , Yn are i.i.d. conditional on the unknown parameter θ having the
joint density (PDF) p(y1, . . . , yn|θ) =

∏n
i=1 p(yi|θ), where y1, . . . , yn are the observed

data. A prior distribution with some fixed hyperparameters is imposed on θ, and
the density of the prior distribution is given by p(θ).

(a) 2 Give an equation for the density (PDF) of the posterior distribution of θ,
i.e. give the standard definition of p(θ|y1, . . . , yn).

(b) 2 Give the definition of the normalisation constant: p(y1, . . . , yn).

(c) 3 Assume that the predictive distribution cannot be computed in closed form.
Describe how a Monte Carlo approximation can be employed to obtain a sample
of size T from the predictive distribution Ỹ |(Y1 = y1, . . . , Yn = yn), where, as
usual, Ỹ and Y1, . . . , Yn are i.i.d. conditional on the parameter θ.

(d) 3 Describe how the normalisation constant p(y1, . . . , yn) from part (b) can be
approximated with the Monte Carlo method.

HINTS: For parts (c) and (d) of this exercise: You can provide some pseudo
code, e.g. as follows:
To take n samples x1, . . . , xn from the distribution of a random variable X,
whose distribution depends on a parameter θ, you can for example write:
Sample: x1 ∼ p(x|θ), . . . , xn ∼ p(x|θ), where p(x|θ) is the density (PDF) of
X given θ.
To indicate that you take the mean of x1, . . . , xn, you can for example write:
Compute: x̄ := 1

n

∑n
i=1 xi.

To indicate that you compute the joint density of x1, . . . , xn you can for example
write:
Compute: p(x1, . . . , xn|θ) =

∏n
i=1 p(xi|θ).

etc.

END OF EXAM
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